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ABSTRACT

Interest in scientific programming using graphics processing units (GPUs) has exploded in

recent years. The advent of NVIDIA’s CUDA programming language in early 2007 enabled

GPU acceleration of numerical software to become mainstream. Relative to central processing

units (CPUs), these devices have extremely high floating point operation capability and mem-

ory bandwidth. Combined with relatively low cost, they are attractive alternatives to more

expensive traditional supercomputers.

Porting existing computational fluid dynamics methods to the new hardware is not always

straightforward. Modern GPUs are massively parallel, some consisting of over 400 processors,

utilizing a unique hierarchy of computational units and memory management. Fully exploiting

this architecture for CFD solvers requires the development of new algorithms tailored to the

devices. To that end, this work presents a solution method for the Navier-Stokes equations

using the SIMPLER algorithm on structured Cartesian grids. A block-iterative scheme with

a parallel recursive tridiagonal solver is used for the discretized equations, giving considerable

performance advantages over prior point-iterative implementations. Using a $200 GPU in

a standard workstation, accelerations of over 20× are observed compared to a serial CPU

implementation for rotorcraft simulations.
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CHAPTER 1 OVERVIEW

The field of computational fluid dynamics has been closely linked to the advancements

of computer technology since the beginning of the digital age. Problems related to CFD

were a primary driving force in the early development of computers in the 1930s and 1940s,

when military concerns demanded accurate computation of artillery ballistic trajectories. Iowa

State’s own Atanasoff-Berry Computer, the world’s first digital computer, was designed in 1937

specifically for the rapid solution of linear systems of equations, the same core problem that

motivates this work over 70 years later.

While numerical solutions to the full Navier-Stokes equations were always of great interest,

the necessary computational power for any practical application was far beyond the reach of

the early pioneers of CFD. One of the first three-dimensional CFD calculations ever performed

was published by Hess and Smith [1] of Douglas Aircraft Co. in 1962. Restricted to non-lifting

potential flow about a body, these calculations were performed on some of the most powerful

computers of the time, an IBM 704 and later IBM 7090. A converged solution for 300 body

panels took approximately 90 minutes on the IBM 7090, which sold for $2,900,000 in 1960

(over $20 million in 2010 dollars), a computation which can be completed in a fraction of a

second on a modern desktop computer.

As computational power and availability increased and corresponding costs decreased, so-

lutions to wider subsets of the Navier-Stokes equations became feasible for engineering design.

The CFD advances in the past decades cannot be done justice in this paper, but some impor-

tant milestones bear mentioning. Jameson and Caughey’s FLO22 code was capable of solving

the three-dimensional transonic full potential equations in 1975, the emergence of several Eu-

ler equation solvers in the early 1980s, and eventually full Navier-Stokes solvers such as the
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successful NASA-funded CFL3D in the mid-1980s. Despite the exponential increase in both

computational power and relevant knowledge, CFD applications remain at the forefront of

computational demands, with many of the fastest supercomputers in the world dedicated to

the field.

1.1 Modern computing hardware

Until very recently, increases in computational performance had generally been provided by

a continuing trend of faster clock speeds. For the last 10 years however, Moore’s law has been

maintained not by increasing the speed of a single processor, but by increasing the number of

processors on a given CPU, with clock speeds generally falling between 2 and 3GHz on typical

consumer CPUs during this time. Physical limitations such as heat dissipation of a large

amount of power in a small area have been the primary reasons for this clock speed stagnation,

and increasingly parallel CPUs are the primary means of computational speed advancement

for the forseeable future. Multi-core CPUs for personal desktop use were first introduced in

2005 by manufacturer AMD, and 5 years later, dual-core, quad-core, and even oct-core CPUs

are commonplace.

This trend away from serial computational performance and onto parallel performance rep-

resents a considerable paradigm shift in all areas of software development, and CFD is no

exception. Parallel computing has been commonplace during the history of CFD, with work

being performed on such famous vector supercomputers as the 256-processor 16MHz ILLIAC

IV, first used in 1976, and the 80MHz, 12-unit Cray-1 soon after. These early vector computers

relied on a “Single-Instruction Multiple-Data,” or SIMD, method of computation, where all

processors executed the same instruction on different data sets. These vector computers were

gradually made obsolete by the increasingly powerful and affordable consumer-grade CPUs

in development , such as Intel’s 8086 in 1978, which remains the basic architecture for the

vast majority of desktop CPUs in use today. Parallel computing did not disappear with the

vector computers, but instead transitioned into supercomputers constructed of large numbers

commodity CPUs connected by various implementation-specific means. Although these com-
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puters are still often used in an SIMD method, they can also function as “Multiple-Instruction

Multiple-Data,” or MIMD, as each CPU has it’s own instruction units. MIMD still describes

the present multi-core processor architectures in today’s desktop computers, in which each pro-

cessor is capable of operating independently as well as operating cooperatively. As computing

hardware evolves, so too must the approach to software design across all fields, including the

algorithms used in CFD.

1.2 Graphics processing units

During the 1990s, hardware specially built for graphics rendering known as graphics pro-

cessing units (GPUs) began to emerge as dedicated devices separated from the CPU. The

massive growth of the video game industry, which now rivals the Hollywood movie indus-

try in size, spurred on advances in GPU technology that has outpaced CPU development in

many ways. These chips have been point-designed for the calculations involved in rendering

3-dimensional graphics such as mapping 2-dimensional textures onto 3-dimensional geometries,

operations which are inherently SIMD in scope. Due to the nature of the computational de-

mands of graphics rendering, GPUs evolved into highly parallel devices with simple instruction

units, similar to the vector computers of the 1970s in many respects.

In the early 2000s, researchers began to exploit GPUs for general-purpose computations

unrelated to computer graphics, initiating the now rapidly expanding field. In part due to

the simplicity of the instruction units, present-day GPUs are capable of vastly outperforming

CPUs in terms of pure floating point performance (FLOPS), with recently released graphics

cards such as NVIDIA’s GTX480 being comprised of 480 processors operating at 1.4GHz. By

comparison, CPUs of similar cost at the time of writing consist of 4 processors operating at

3.0GHz. Harnessing this newfound computational horsepower for CFD, however, requires a

considerable departure from traditional software design. To that end, this work describes a

new approach to a classical CFD solution algorithm which can leverage GPU computing in

order to reduce run times by more than an order of magnitude.
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1.3 Previous work

As GPU computing is still in it’s infancy, there are few published examples of CFD work

in the field, most of which have appeared in the past two years. Some notable work includes

an early example of a structured 3D Euler solvers by Brandvik et al and Elsen et al [2, 3],

unstructured solvers by Corrigan et al [4], and other related work found in [5–15]. Parallel

CFD computing on CPUs is well developed by comparison, and important ideas from [16–22]

provide some insight into possible approaches for GPUs. It is important to note that traditional

algorithms for parallel CPU computing are not in general the most efficient approaches for the

considerably different architecture of GPUs. The present work improves on previous work by

implementing block-iterative solution methods for structured grids, providing faster solution

convergence than the point-iterative methods previously cited.
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CHAPTER 2 SIMPLER METHOD

The SIMPLER method of Patankar [23] is used as the underlying method of solving the

discretized Navier-Stokes equations in this work. While the GPU-specific methods described

later remain applicable to most any CFD algorithm, they will generally be described in the

context of a 3-dimensional flow solver using this well-known pressure-based scheme.

2.1 General differential equation

Patankar presents the method in terms of a general differential equation

∂

∂t
(ρφ) + ∇ · (ρ

−→
V φ) = ∇ · (Γ∇φ) + S (2.1)

where φ is the dependent variable, Γ is a diffusion coefficient, and S is a source term. In this

form, the terms of 2.1 represent unsteady, convection, diffusion, and source terms, respectively.

The elegance of this method lies in the ability to choose appropriate values of φ, Γ, and S to

recover relevant equations; replacing φ with the scalar 1 or velocity vector −→u and corresponding

terms for Γ and S leads to the continuity and momentum conservation equations, respectively.

By choosing a general differential equation of this form, a method for discretizing and solving

it would lead directly to a method for the original physical equations of interest.

Temporarily dropping the unsteady term and expanding to a 3-dimensional Cartesian co-

ordinate system gives:

∂

∂x
(ρuφ) +

∂

∂y
(ρvφ) +

∂

∂z
(ρwφ) =

∂

∂x
(Γ

∂φ

∂x
) +

∂

∂y
(Γ

∂φ

∂y
) +

∂

∂z
(Γ

∂φ

∂z
) + S (2.2)

and rearranging by derivative direction:
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∂

∂x
(ρuφ − Γ

∂φ

∂x
) +

∂

∂y
(ρvφ − Γ

∂φ

∂xy
) +

∂

∂z
(ρwφ − Γ

∂φ

∂z
) = S (2.3)

the equation can be more clearly represented by defining the total convective and diffusive

fluxes:

Jx ≡ ρuφ − Γ
∂φ

∂x
(2.4)

Jy ≡ ρvφ − Γ
∂φ

∂y
(2.5)

Jz ≡ ρvφ − Γ
∂φ

∂z
(2.6)

simplifying the general differential equation into

∂Jx

∂x
+

∂Jy

∂y
+

∂Jz

∂z
= S (2.7)

Integrating over a 3-dimensional control volume

∫

V

(

∂Jx

∂x
+

∂Jy

∂y
+

∂Jz

∂z

)

dV =

∫

V

S dV (2.8)

gives

Je − Jw + Jn − Js + Jt − Jb = S · V (2.9)

Je ≡ (Jx)(∆y)e(∆z)e (2.10)

Jw ≡ (Jx)(∆y)w(∆z)w (2.11)

Jn ≡ (Jy)(∆x)n(∆z)n (2.12)

Js ≡ (Jy)(∆x)s(∆z)s (2.13)

Jt ≡ (Jz)(∆x)t(∆y)t (2.14)

Jb ≡ (Jz)(∆x)b(∆y)b (2.15)
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where subscripts e,w, n, s, t, b represent quantities computed at the six control volume faces,

termed east, west, north, south, top, and bottom for convenience, corresponding to ±i, j, k

directions.

Invoking the continuity equation

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0 (2.16)

and integrating in the same manner gives:

Fe − Fw + Fn − Fs + Ft − Fb = 0 (2.17)

where F is the mass flux across the control volume face. Multiplying 2.17 by φP (subscript P

indicating value at volume center) and subtracting from 2.9 gives:

(Je − FeφP ) + (Jw − FwφP ) (2.18)

+(Jn − FnφP ) + (Js − FsφP ) (2.19)

+(Jt − FtφP ) + (Jb − FbφP ) = (SC + SP φP )∆x∆y∆z (2.20)

where the source term S has been linearized into S = SC + SP φP to account for the source

term’s dependence on the dependent variable φ. This is rearranged into the final discretized

equation

aP φP = aEφE + aW φW + aNφN + aSφs + aT φT + aBφB + b

=
∑

anbφnb + b (2.21)

where
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aE ≡ DeA(|Pe|) + [[−Fe, 0]] (2.22)

aW ≡ DwA(|Pw|) + [[Fw, 0]] (2.23)

aN ≡ DnA(|Pn|) + [[−Fn, 0]] (2.24)

aS ≡ DsA(|Ps|) + [[Fs, 0]] (2.25)

aT ≡ DtA(|Pt|) + [[−Ft, 0]] (2.26)

aB ≡ DbA(|Pb|) + [[Fb, 0]] (2.27)

b ≡ SC∆x∆y∆z + a0
P φ0

P (2.28)

aP ≡ aE + aW + aN + aS + aT + aB + a0
P − SP ∆x∆y∆z (2.29)

and the diffusion terms are written as

De ≡
Γe∆y∆z

(δx)e
(2.30)

and P represents the Peclet number as

Pe ≡
Fe

De

(2.31)

and

A(|P |) ≡ [[0, (1 − 0.1|P |)5]] (2.32)

is the power-law scheme, and the notation [[x, y]] denotes the maximum value of two terms x

and y.

2.2 The SIMPLER algorithm

In the present work, three-dimensional incompressible flow is considered, requiring the

solution of the mass and momentum equations in order to acquire the scalar pressure field and

three components of momentum. Due to the coupled nature of these quantities, an iterative

procedure is needed. The Navier-Stokes equations are formulated in terms of the general
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differential equation described above. By setting φ = u, v,w, Γ = µ, and an appropriate

source term, the momentum equations are recovered.
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J
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n

s

w

Figure 2.1 Control volume in two dimensions.

In the staggered grid formation, pressure is calculated at cell centers, while velocities are

treated at the cell faces. The momentum equation for the u component of the velocity is

written as

ue =

∑

anbunb + b

ae

+ de(pP − pE) (2.33)

and a pseudovelocity ûe defined such that

ue = ûe + de(pP − pE) (2.34)

and similarly for the other velocity components. Combining these equations yields an

equation for pressure

aP pP = aEpE + aW pW + aNpN + aSps + aBpB + aT pT + b (2.35)

where the source term b is
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b =
(ρ0

P − ρP )∆x∆y∆z

∆t
+[(ρû)w − (ρû)e]∆y∆z +[(ρv̂)s − (ρv̂)n]∆x∆z +[(ρŵ)b − (ρŵ)t]∆x∆y

(2.36)

The SIMPLER algorithm consists of the following steps:

1. Calculate û, v̂, ŵ in equation 2.34 by computing the coefficients from the previous iter-

ation.

2. Calculate the coefficients for the pressure equation 2.35.

3. Solve this system of equations for the pressure field p.

4. Using this updated pressure field, solve the momentum equations.

5. Calculate the source term b and solve the pressure equation using the new velocity values.

6. Utilizing this pressure correction p′ in place of p, correct the velocity field with equation

2.33.

7. Repeat the process until convergence is reached.

The solution to the pressure and velocity equation systems that arise in steps 3, 4, and 5

represents the vast majority of computational effort required in the algorithm. Methods for

the solution of these linear systems is described in the following chapters. Complete details of

the SIMPLER method can be found in Patankar [23].
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CHAPTER 3 PARALLEL SOLUTION METHODS FOR LINEAR

SYSTEMS

3.1 Schwarz domain decomposition

The alternating Schwarz method [24,24–29] is a robust, straightforward method for solving

boundary value problems on multiple domains. It is an overlapping method, where the subdo-

mains overlap each other in order to pass information, as opposed to a substructuring method

(i.e., Schur complement) that directly solves the sparse matrix. The algorithm for solving an

unknown u as in Figure 3.1 is as follows:

1. Pass un−1
2 at Γ1 to Ω1

2. Solve Ω1 with the un−1
2 guess as the Dirichlet boundary condition on Γ1, and regular

boundaries on ∂Ω1

3. Pass un
1 at Γ2 to Ω2

4. Solve Ω2 with un
1 as Dirichlet boundary condition on Γ2, and regular boundaries on ∂Ω2

5. Repeat to convergence

Developed by Hermann Schwarz in the 19th century, this method represents an analytical

solution to the original elliptic boundary value problem. This provides some benefits that

cannot be found in the parallelization methods which are drawn strictly from consideration

of a numerical solution. In the Schwarz method, it is unnecessary for the overlapping grids

to match, or even to use the same solution algorithms, provided that the boundary condition

exchange is performed with a proper interpolation.
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dΩ1

dΩ2

Ω2

Ω1

Γ2

Γ1

Figure 3.1 Alternating Schwarz method

3.1.1 Application to SIMPLER

In the SIMPLER method, this domain decomposition approach is easily implemented for

overlapping matched grids, where data is transferred as in Figure 3.2, where one domain’s

interior cell data becomes the other domain’s new boundary data as in the algorithm above.

Incompressible flow solvers have been created using this method in Brakkee et al in [18,19,30].

Extension to two-dimensional domains, figure 3.3, and three-dimensions follows the same

pattern in the case of two subdomains.

3.1.2 Extension to many subdomains

In the case of more than two overlapping subdomains, special care must be taken for

exchange of data. In Figure 3.4, a 4-color scheme (red-black-green-orange) is used. After the

iteration, data from the internal points of the red cells update the boundary conditions of

non-red cells, and red cell boundary conditions are left unchanged. After the next iteration,

data from black cells update non-black cell boundary conditions, etc., repeating the process.

Extrapolation to three dimensions would use 8 colors for a structured cartesian grid.

This coloring scheme can be extended indefinitly to any number of subdomains as in Figure

3.5. It is important to note here that in the limit of many subdomains, the iterative nature of

passing the artificial boundary values leads to a global convergence rate that approaches that
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Algorithm step 3

Physical boundaryPhysical boundary
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Γ1

Γ2 Ω2

Ω1

�� ��
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Figure 3.2 Schwarz method applied to 1D slice of staggered grid, 3 over-

lapping cells

of the point-iterative Gauss-Seidel method [25]. This attribute leads to a case of diminished

returns in parallel efficiency when the subdomains are being solved using a more efficient

line-implicit solution algorithm, as is the case here. Extension beyond approximately eight

subdomains has been found to lead to poor global convergence behavior. This is not a strict

limit however, as implementation of multigrid strategies can almost completely mitigate this

behavior.

3.1.3 Domain decomposition results

Despite the limitations towards a large degree of parallelization in certain implementations,

the analytical basis of the method leads to two important advantages in application. First,

an existing computer program will generally require very little modification to include this

parallelization approach. Since data exchange is performed only through boundary values, each

subdomain can effectively be treated by an independent program, needing only a functionality

to occasionally exchange this data. Secondly, the quantity of data that must be passed between
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Figure 3.3 Data exchange between two 2D subdomains

Figure 3.4 Coloring scheme with four overlapping subdomains.

processes is minimized, decreasing the “granularity” of parallel computation.

A 2-dimensional driven cavity is considered here, with results given for a 128 × 128 grid

at Re = 100. Subdomain solutions are performed by an alternating line-iterative Gauss-Seidel

method, utilizing the Thomas algorithm for solution of the tridiagonal systems that arise. The

flowfield, seen at 3.6, consists of a “lid” at the top of a cavity moving to the right with unit

velocity, and all other walls non-slip, creating the areas of recirculation seen in the lower left

and right corners of the cavity. Velocity centerlines, Figures 3.8 and 3.7, validate that the

original single-domain computation is successfully recovered in the decomposed domains.

There are several factors of note in Figure 3.9 showing residual history between the various
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Figure 3.5 Coloring scheme for case of many subdomains.
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Figure 3.6 Streamlines at convergence, 128x128 grid, Re = 100

decompositions. First, the convergence rate on a per-iteration basis (not wall-clock time) is

generally worse for the decomposed domains, which is to be expected in light of previous

discussion. Additionally, increasing the number of overlapping cells between domains provides

a better convergence rate at the expense of larger computational cost in the subdomains.

This can be explained by the effect of one subdomain propagating deeper into another during

boundary condition exchange. Also of note is the parallel efficiency observed in table 3.1, where

increasing the number of subdomains is shown to require a larger number of iterations for a

given convergence criteria. Parallel efficiency η is defined as the function of iteration time of

the serial algorithm Tser, parallel algorithm Tpar, and number of processors N .
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Figure 3.7 Velocity at y-centerline, 128x128 grid
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Figure 3.8 Velocity at x-centerline, 128x128 grid

η =
Tser

NTpar

(3.1)

3.2 Tridiagonal systems

In the discretized equation systems 2.21 for a structured grid, banded matrices naturally

arise. Direct solution of these matrices is computationally prohibitive, so many iterative meth-

ods may be used for numerical solution. In this work, a line iterative method is used known

as successive line over-relation, or SLOR, whereby unknowns along a solution line are treated
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Figure 3.9 Residual history, 128x128 grid.

Table 3.1 Convergence time to 10−9 pressure correction L2 norm for single-

vs multi-domain, 128x128 grid.

Iterations Real time (s) Speed-up Parallel efficiency

1 domain 232 11.95

2 domain 269 6.56 1.82 91%

4 domain 276 3.36 3.55 89%

implicitly, while their neighbors are treated explicitly, resulting in a tridiagonal system of the

form 3.2. Here, the unknowns along a line are given by x, the influence of the values of neigh-

bors along the line are incorporated in a, b, and c, and source terms and off-line neighbors

are incorporated in d. By solving along a line as in Figure 3.10 and sweeping in alternating

directions (described in more detail in section 4.2.2), a solution can be determined with con-

siderably more efficiency than the case of a point-iterative method. It is this method which

was used for the solution of subdomains in the previous section.
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Figure 3.10 Successive line over-relaxation (SLOR.)
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(3.2)

3.2.1 Parallel implemention of serial Thomas algorithm

The Thomas algorithm, also known as the tridiagonal matrix algorithm (TDMA), is a

reduced form of Gaussian elimination for tridiagonal systems. Considering the form of equation

3.2, the method is comprised of two steps. First, a forward sweep:

ci =











c1/b1 for i = 1

ci/(bi − ci−1ai) for i = 2 → n
(3.3)

di =











d1/b1 for i = 1

(di − di−1ai)/(bi − ci−1ai) for i = 2 → n
(3.4)

followed by back substitution

xi =











di for i = n

di − ci−1ai for i = n − 1 → 2
(3.5)
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This is an inherently serial procedure, but it can be used in a parallel environment consid-

ering that a given SLOR sweep can typically contain over 100 independent tridiagonal systems.

In application, however, this creates many fine-grained parallel tasks which may not be suit-

able for the hardware in use. The primary advantage of this approach is the simplicity of

implementation on a shared-memory computer; through the addition of a handful of OpenMP

directives for the parallel loop structure, an appreciable acceleration can be achieved with little

effort.

Figure 3.11 Quad-core processor diagram, Intel.

Parallel efficiency is inhibited with this naive approach due to the data dependency issues

that arise in the collection of coefficients for the tridiagonal system. For a computational

thread solving for unknowns along a gridline, it must access the neighboring values as well,

which are to be incorporated in the right hand side of the system. If those neighboring values

are in the process of being updated by a different thread, it will be subject to a “memory lock”

which prevents what would be an indeterminate behavior where one process attempts to write

to a data location while another attempts to read from it. Increasing the grid size (and thus

the amount of computation necessary for solution of a tridiagonal system) has been found to

alleviate some of this efficiency inhibition on the modern multi-core CPU architectures as in

Figure 3.11. This is due to a decrease in the granulairty of the problem, reducing the memory

conflicts.



www.manaraa.com

20

Table 3.2 Parallel efficiency for SIMPLER iterations of varying grid sizes.

Problem size CPU number Time per iteration (s) Speed-up Parallel efficiency

30 × 30 × 30 1 0.0915 − −

2 0.0619 1.48 74%

4 0.0754 1.22 30%

64 × 64 × 64 1 3.34 − −

2 2.49 1.34 67%

4 2.31 1.45 36%

128 × 128 × 128 1 36.0 − −

2 26.6 1.35 68%

4 24.0 1.50 38%

Seen in table 3.2, the parallel performance of this approach is quite poor in comparison

to the domain decomposition method. Despite this, it should not be totally disregarded, as

its implementation is a near-trivial way to gain an appreciable amount of performance from a

modern multi-core processor.

3.2.2 Parallel Cyclic Reduction

The parallel cyclic reduction (PCR) algorithm of Hockney [31] is a modification of the

original cyclic reduction method for tridiagonal systems. PCR is highly amenable to GPU

computing both for its regular memory access and its use of all available vector processors.

Consider the three equations adjacent to the ith row of the tridiagonal system:

ai−1xi−2 + bi−1xi−1 + ci−1xi = di−1

aixi−1 + bixi + cixi+1 = di

ai+1xi + bi+1xi+1 + ci+1xi+2 = di+1

(3.6)

Multiplying the di−1 equation by αi = −ai/bi−1 and the di+1 equation by γi = −ci/bi+1 yields
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(

−ai

bi−1

)

ai−1xi−2 +
(

−ai

bi−1

)

bi−1xi−1 +
(

−ai

bi−1

)

ci−1xi =
(

−ai

bi−1

)

di−1

aixi−1 + bixi + cixi+1 = di
(

−ci

bi+1

)

ai+1xi +
(

−ci

bi+1

)

bi+1xi+1 +
(

−ci

bi+1

)

ci+1xi+2 =
(

−ci

bi+1

)

di+1

(3.7)

and summing eliminates the xi−1 and xi+1 terms, yields a modified set of equations

a′ixi−2 + b′ixi + c′ixi+2 = d′i (3.8)

where

a′i = αiai−1

b′i = bi + αici−1 + γiai+1

c′i = γici+1

d′i = di + αidi−1 + γidi+1

(3.9)

Transforming each equation results in a banded system of the form:
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(3.10)

Reordering this system into even and odd coefficients yields
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(3.11)

Examining equation 3.11 reveals two important characteristics: the equations have been decou-

pled into two halves, and it still has a tridiagonal form which can be recursively treated with

the original reduction formula. 3.10 shows that each reduction eliminates some off-diagonal

elements while pushing others further from the main diagonal. By then reducing the system

for levels l = 1, 2, ..., log2 n − 1, equation 3.9 can be expressed in terms of the reduction level

by

α
[l]
i = −a

[l−1]
i /b

[l−1]

i−2(l−1)

γ
[l]
i = −c

[l−1]
i /b

[l−1]

i+2(l−1)

a
[l]
i = αia

[l−1]

i−2(l−1)

b
[l]
i = b

[l−1]
i + αic

[l−1]

i−2(l−1) + γia
[l−1]

i+2(l−1)

c
[l]
i = γic

[l−1]

i+2(l−1)

d
[l]
i = d

[l−1]
i + αid

[l−1]

i−2(l−1) + γid
[l−1]

i+2(l−1)

(3.12)

where the superscripts in brackets indicate reduction level, and superscripts in parentheses

indicate integer exponents for determining the appropriate indices. After reducing to the final

level q = log2 n − 1, the unknown values are obtained from
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xi = d
[q]
i /b

[q]
i (3.13)

Following 3.12 verbatim results in accessing indices outside the range of the system. For exam-

ple, an update to the location i = 1 at recursion level l = 2 requires information from element

i − 2(l−1) = −1, which does not fall in the original range of i = 1 ≤ n. This is accounted for

by noting that any system of equations can be extended by

ai = 0

bi = 1

ci = 0

di = 0



































for i < 1 and i > n (3.14)

which results in xi = 0 for out-of-range elements, and doesn’t affect the original system.

3.12 clearly requires O(n) operations at each of log2 n reductions, while 3.13 takes n operations,

yielding a total algorithm cost of O(n log2 n). While this behavior is worse than the O(n)

complexity of Gauss elimination, all steps exhibit n-parallelism, admitting solutions in times

proportional to log2 n. The ability to scale to very large number of computational elements

combined with the regular vector nature of the memory accesses at all steps in the algorithm

make PCR the most attractive parallel tridiagonal solver for this work.

3.2.2.1 PCR Implementation in CUDA

The memory access patterns and scalability of parallel cyclic reduction provide a convenient

mapping to the CUDA model of GPU programming [32]. While each GPU multiprocessor

consists of 8 thread processors running concurrently, peak efficiency is achieved when each

block uses in excess of 64 threads [33]. Equation 3.12 shows that for a given reduction level

[l], each coefficient for an equation i can be reduced independently based only on the previous

reduction values at [l − 1]. The implication of this behavior is that every ith equation of a

system can be mapped to its own processing thread.
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Figure 3.12 Communication pattern for parallel cyclic reduction, with each

vertical path representing a single thread. pi represents the

coefficient vector {ai, bi, ci, di} and pφ is the coefficient vector

for ranges outside the equation system, given by 3.14.

By implementing a PCR kernel utilizing thread block dimensions equal to the number of

unknowns in the system, code complexity is reduced; more importantly, a very high degree

of parallelism can be expressed that provides exploitation of the GPU architecture. Since a

typical CFD simulation requires structured grid dimensions resulting in tridiagonal systems of

100 or more, this is of great benefit to overall solution efficiency. Figure 3.12 shows the data

dependencies for the solution algorithm.
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CHAPTER 4 GPU PROGRAMMING FOR CFD

The computational power of modern graphics cards can be directly attributed to consumer

demand for increasingly impressive visual effects in video games. In recent years, total revenue

in the video game industry has rivaled that of the music and film industries. As a result of this

market demand, intense competition between the two primary GPU manufacturers NVIDIA

and ATI, and the fundamentally parallel data-intensive nature of graphics rendering, the in-

crease in raw computational power of graphics cards has far outpaced the advances in the CPU

market (Figures 4.1,4.2). The demands of projecting 3-dimensional digital environments onto

2-dimensional displays has led to GPUs becoming massively parallel computational devices

with very high memory bandwidth [33].

The first applications of general-purpose computation on GPUs (GPGPU) have their roots

in the OpenGL and Direct3D APIs, originally intended solely for graphics applications. Writing

mathematical software for these APIs required a mapping of the mathematics of interest onto

the language of computer graphics, which is considerably more time-consuming than the histor-

ical CPU approach. With the advent of Stanford’s BrookGPU in the early 2000s, applications

could be written in a C-like syntax that abstracted the graphics hardware, greatly expanding

the accessibility of GPGPU programming to those without graphics-specific knowledge. In the

past five years, NVIDIA’s CUDA, Microsoft’s DirectCompute, ATI/AMD’s Stream, and the

collaborative OpenCL frameworks have replaced BrookGPU as the tools of choice for exploit-

ing graphics hardware. It is the author’s opinion that NVIDIA’s CUDA (Compute Unified

Device Architecture) implementation is the most mature technology of these at the time of

writing, and is used throughout the work presented.
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4.1 Programming model

All available GPGPU frameworks share some necessary similarities in order to treat GPU

architectures as generic vector processors. In this section, the focus is on utilizing CUDA, but

the higher level concepts carry over to other implementations.

4.1.1 Hardware overview

Writing effective software in CUDA C requires some knowledge of the underlying hard-

ware’s strengths, weaknesses, and strict limitations. While some functional knowledge of CPU

architecture aids in the writing of efficient mathematical software in CPU-based languages such

as C, C++, or Fortran, the massively parallel and close-to-hardware nature of GPU program-

ming makes hardware familiarity a necessity. The focus here is on NVIDIA’s GT200-series

GPUs, originally released mid-2008. Older and newer architectures differ in technical details,

but the general programming approach will remain valid for the forseeable future.

The GT200-series GPU consists of up to 30 multithreaded Streaming Multiprocessors

(SMPs), each of which consist of 8 thread processors, for a total of 240 processors (also referred

to as “CUDA cores”.) Each multiprocessor has a low-latency local “shared” memory accessible

by all of its thread processors, and all multi- and thread processors have access to a higher

latency global “device” memory. The shared memory functions as a user-controlled cache,

and its efficient utilization is essential. In order to address this architecture, CUDA programs

are written using a Single-Instruction-Multiple-Thread (SIMT) programming model, function-

ally similar to the Single-Instruction-Multiple-Data (SIMD) approach utilized on the vector

computers of past decades.

4.1.2 Software overview

CUDA programming introduces the kernel concept, which takes the form of a C function.

Kernels are executed concurrently by the GPU’s multiprocessors, which in turn utilize their

parallel thread processors for computation. An abstraction of this parallelization is expressed
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Figure 4.3 Grid of thread blocks, CUDA Programming Guide.

by the programmer when a kernel is invoked by specifying an hierarchy of thread blocks utilizing

the <<<...>>> syntax.

A group of thread blocks, or just “blocks,” is termed a grid. A grid is a 1- or 2-dimensional

collection of blocks, with each block being executed by a single multiprocessor (Figure 4.3.)

Each block within a grid is comprised of the same shape of a 1-, 2-, or 3-dimensional col-

lection of threads, which are executed concurrently by the thread processors on the block’s

multiprocessor.

In the SIMT model, the same kernel is executed across every block when invoked. In

order for this one kernel to operate on a large array of data simultaneously, every thread is

aware of its block indices within the grid (blockIdx.x, blockIdx.y), and its thread indices
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within the block (threadIdx.x, threadIdx.y, threadIdx.z) through the intrinsic variables

in parantheses.

Listing 4.1 3-dimensional matrix addition in CUDA� �

g l o b a l void Add3DMatrix ( f loat ∗ A, f loat ∗ B, f loat ∗ C)
{

int i = blockIdx . x ;
int j = blockIdx . y ;
int k = threadIdx . x ;
int idim = gridDim . x ;
int jdim = gridDim . y ;
int index = k ∗ idim ∗ jdim + j ∗ idim + i ;
C[ index ] = A[ index ] + B[ index ] ;

}

int main ( )
{

. . .
dim3 b lo ck s ( idim , jdim , 1 ) ;
dim3 threads ( kdim , 1 , 1 ) ;
Add3DMatrix<<< blocks , threads >>>( A, B, C ) ;

}
� �

In the above CUDA code snippet, two arrays A and B of size float[idim*jdim*kdim] are

added together to form C. This one example incorporates a number of important attributes

of general CUDA programming, as well as the specific methods used for structured grid CFD

algorithms in this work. Through the use of the built-in variables, every thread within the

kernel can execute the same instruction on different data.

4.1.3 Memory hierarchy

In addition to the computational hierarchy of grids and blocks, memory use must also

be managed manually. The device memory, shown in figure 4.4, is the largest portion of

memory available on the graphics card, and is globally accessible by all threads. This memory

is typically allocated by the host through the use of cudaMalloc commands which allocate

pieces of memory which can be associated with a pointer, similar to the traditional malloc of

the C language. It is this memory space which stores all the grid and flowfield information

relevant to the computations. The device used here has 896 MB of device memory, which

corresponds to a gridsize of approximately 1283 which can be stored entirely on the device
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Figure 4.4 Hardware schematic, CUDA Programming Guide.

without resorting to spillover onto main system memory.

The shared memory is located on each multiprocessor, and has the lifetime of the block

running on it. This is very low-latency memory similar to a user-controlled cache. Global

memory suffers from a latency of 400-600 clock cycles for operations, while shared memory

accesses have a latency of 4 clock cycles or less. Due to this very large discrepancy and need

to manually manage it, shared memory must be effectively used to achieve full performance

on the GPU. Every kernel then typically follows this sequence of operations:

1. Determine grid location corresponding to block and thread ID’s.

2. Copy relevant data from device to shared memory.
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3. Perform computation using entirely shared memory.

4. Copy solution back to device memory.

The latency in memory copy operations between shared and device memory can be largely

hidden by the on-chip thread scheduler, provided the memory accesses are done in a sequential

manner. This is termed memory coalescing, and the requirements for low-latency access is

described in detail in the CUDA Programming Guide. The grid representation used in the next

section naturally provides coalesced memory access for most operations, aiding performance

significantly.

Listing 4.2 3-dimensional matrix addition in CUDA with shared memory� �

g l o b a l void Add3DMatrix ( f loat ∗ A, f loat ∗ B, f loat ∗ C)
{

int i = blockIdx . x ;
int j = blockIdx . y ;
int k = threadIdx . x ;
int idim = gridDim . x ;
int jdim = gridDim . y ;
int index = k ∗ idim ∗ jdim + j ∗ idim + i ;
int bdim = blockDim . x ;
extern s h a r e d char shared [ ] ;

s ync thr eads ( ) ;

f loat ∗ A s = ( f loat ∗) shared ;
f loat ∗ B s = ( f loat ∗)&A s [ bdim ] ;
f loat ∗ C s = ( f loat ∗)&B s [ bdim ] ;

sync thr eads ( ) ;

A s [ k ] = A[ index ] ;
B s [ k ] = B[ index ] ;

s ync thr eads ( ) ;

C s [ k ] = A s [ k ] + B s [ k ] ;

s ync thr eads ( ) ;

C[ index ] = C s [ k ] ;
}

int main ( )
{

. . .
dim3 b lo ck s ( idim , jdim , 1 ) ;
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dim3 threads ( kdim , 1 , 1 ) ;
Add3DMatrix<<< blocks , threads , kdim∗3∗ s izeof ( f loat ) >>>( A, B, C ) ;

}
� �

The modification to listing 4.1 shown above implements matrix addition using shared mem-

ory. Of note is the addition of a third argument to the <<<...>>> syntax, which specifies the

amount of shared memory to be used in the kernel. The kernel itself now contains an external

reference to the shared memory, which are addressed by local pointers.

4.2 Solver implementation

The goal of this work is to describe a method for a 3-dimensional structured grid CFD

solver using the SIMPLER algorithm. To that end, new approaches must be developed to

efficiently map the historically serial CPU strategies to the complexities of massively parallel

GPUs. Presented here is a solution that strives to maintain a balance between code simplicity,

legacy Fortran compatability, hardware scalability, numerical efficiency, and applicability to a

realistic range of engineering problem sizes. Details of earlier work in implementing CUDA

solvers include [2, 4, 8], all of which used explicit (point-iterative) solution schemes. No prior

published work utilizing a block-iterative method exists.

4.2.1 Structured grid representation

The mathematical foundation of CFD is to discretize the Navier-Stokes equations into linear

systems of equations Ax = b which can be solved by any available means. In a prototypical

finite volume fluid dynamics flow solver, here we consider the software subroutines to fall into

one of two categories: those responsible for calculating the coefficients of A and b, and those

responsible for the numerical solution of x; we first consider the former.

In the approach here, all the computational work to be done in computing the system’s

coefficients are of the trivially parallelizable variety. That is, every calculation involved can be

performed independently of every other at all cells simultaneously. In the SIMPLER algorithm,

this includes calculations such as the mass flow rate equation 2.17 and conductance, and

subsequently the coefficients of the momentum equations 2.22, as well as various boundary
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conditions and source terms. All terms within these equations are considered constant for a

given iteration, and thus can be computed in any order without error.
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Figure 4.5 Mapping of a 2-dimensional CUDA grid to an (i, j) slice in the

computational domain.

This feature permits a very direct mapping of the 3-dimensional structured computational

domain onto the parallel CUDA hierarchy of blocks and threads for a majority of the program.

First, we consider a slice in the i−j plane. By mapping this to the concept of the 2-dimensional

CUDA grid as in Figure 4.2.1, the internal block index variables (blockIdx.x,blockIdx.y)

match directly with the computational domain variables (i, j).
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Next we consider the thread arrangement within the computational blocks. Choosing a 1-

dimensional arrangement as in Figure 4.2.1, each thread corresponds to a k coordinate in the

block. Using this simple scheme, kernels can address a grid element (i, j, k) at (blockIdx.x,

blockIdx.y, threadIdx.x).

When considering efficient use of the hardware, two dominant and often conflicting traits

must be addressed. First, the number of blocks per grid should be far in excess of the number of

multiprocessors available for them to be executed on. Second, the number of threads per block

should be in excess of the number (8) of physical thread processors on the multiprocessor [34].

In the case of a 128 × 128 × 128 grid, a total of 16384 blocks consisting of 128 threads are

used. With a typical subroutine requiring anywhere from 2 to 8 variables per node with each

variable requiring 4 bytes, each grid line calculation can comfortably fit within the 16KB shared

memory limit of the current generation hardware. By treating the full 3-dimensional grid in

terms of these 2-d and 1-d chunks, a simple but efficient way of utilizing the large degree of

parallelism on the GPU is achieved.

4.2.2 Parallel solution kernel

After collecting the coefficients, the linear system of equations must be solved. Considerable

care must be taken here as parallelization of a solution algorithm is not as straightforward as

for coefficient collection. The original serial solution was achieved through an efficient line-

based alternating direction (ADI) method. In this method, the unknowns along a line in the

computational domain are solved for implicitly, while neighboring values are treated explicitly

based on a previous guess. This forms a tridiagonal system which can be solved by any means

available. By subsequently alternating the solution direction, e.g. solve along k grid lines,

followed by j lines, then i, errors are quickly smoothed out and a converged solution is found.

By treating solution kernels in terms of 1-dimensional thread blocks and grids in terms of

2-dimensional planes, flexibility is gained that allows alternating the sequence of solution by

simply changing the grid and block parameters as in Figure 4.2.2..

While treating each line involved in the sweeps as an individual CUDA block as previously
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Figure 4.7 Alternating directions for tridiagonal solver. Blue represents

the CUDA grid, while red represents the thread blocks and

direction of implicit solution.

described is straightforward, utilizing the multiprocessor to solve the tridiagonal systems that

arise is not. By implementing the parallel cyclic reduction algorithm of section 3.2.2 for the

solutions of the per-block tridiagonal systems, all available thread processors can be used at

near full-capacity.

4.2.3 Legacy and CPU code integration

While it is generally preferable to offload all computation to the GPU in terms of speed,

this may not be possible or desirable. Interoperability with an existing CPU code base may

be desired, with the GPU software used simply as a plugin to accelerate certain parts formerly

done on the CPU. Or as is the case for the rotor simulation later in this work, a mostly GPU-
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based code may wish to occasionally use a CPU-based function. Either way, interoperability

through array transfers between the device and the main system memory is performed in the

same manner.

In the present implementation, all input/output functionality is performed by CPU code,

as the GPU is incapable of these tasks. The CPU is also used for all initialization tasks such

as computing the various grid constants that follow from the basic grid cell inputs. After this

initialization, memory on the GPU is allocated, and all necessary data is copied from main

memory to the device, after which the iterative scheme can be performed. Upon completion,

the desired flowfield information is copied back to main memory, where disk output can be

performed and execution terminated.

Of interest in this work is the implementation of the rotor model of Rajagopalan [35]. This

procedure utilizes the flowfield information in conjuntion with data about a rotor’s characteris-

tics in order to generate momentum source terms which are added to the SIMPLER routine in

order to simulate a rotor. The existing code consists of CPU-based Fortran, requiring commu-

nication of the flowfield at each iteration. This necessitates transferring the pressure field and

velocity component arrays from device memory to main memory, calling the external Fortran

routines, and transferring the computed momentum source arrays onto the device.

Typically this behavior of large, repeated memory transfers is undesirable, due to the

relatively slow bandwidth and latency compared to on-device memory. This is mitigated by

noting that this rotor model, and the associated transfers, can be performed at any time after

the last iteration finishes and before the current iteration solves for the velocity field. Through

the use of asynchronous memory transfers, this work can generally be accomplished without

reaching a synchronization barrier, minimizing loss of performance.
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CHAPTER 5 RESULTS

Presented here are some sample test cases performed by the newly implemented GPU, with

validation through comparison with an existing CPU-based Fortran method. Algorithmically,

the two different approaches perform identical computation, with the exception of the method

for solving the tridiagonal system as described in 4.2.2. In terms of convergence rate per

iteration, these alternate solution methods are nearly identical, so this difference is ignored,

and “full convergence” times are utilized for acceleration comparisons.

5.1 Driven Cavity

Internal flow for a 3-dimensional driven cavity is computed. The domain is a cube consisting

of no-slip walls, with a “lid” at the maximum y-direction moving at a chosen velocity in the

x-direction. A configuration corresponding to a Reynold’s number of Re = 100 based on box

diameter and lid velocity is chosen here.

Table 5.1 Convergence acceleration for GPU implementation on 3D driven

cavity.

Grid size GPU (s) CPUserial (s) Speed-upserial

126x126x126 2130 48600 22.8x

64x64x64 214 4313 20.1x

30x30x30 33 102 3.09x
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Figure 5.1 Velocity magnitude isosurface for 3D driven cavity, Re = 100,

mesh size 1263.

5.2 Rotorcraft simulations

Isolated rotor simulations are performed through integration of a CPU-based rotor model [35].

In coupling with the CPU code, flowfield information from the GPU is copied to main system

memory at each iteration, where the rotor model computes momentum source terms which are

transferred back to GPU memory. Grid size considered is 93 × 93 × 66.

Table 5.2 Convergence acceleration for GPU implementation on isolated

rotor computation.

Simulation GPU (s) CPUserial (s) Speed-upserial

Isolated hover, grid size 93 × 93 × 66 1265 29658 23.4x
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Figure 5.5 Vorticity magnitude at isolated rotor center in free hover.
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CHAPTER 6 SUMMARY AND DISCUSSION

The recent advent of programmable graphics hardware represents a low cost alternative

to traditional high performance computing. For a small investment in hardware, numerical

software running on common workstations can be accelerated an order of magnitude or more,

rivaling or outperforming parallel CPU servers at a fraction of the cost.

While the approach to efficient software development for these devices differs considerably

from CPU-based platforms, the historical context and present trends in computing leads one

to believe this change is inevitable. Massively parallel numerical software will be the rule

in the future, not the exception. Fully exploiting the potential of these devices requires the

development of new algorithms. With the constant demand for higher fidelity simulations,

CFD solution algorithms must adapt to new, faster computer architectures.

To that end, this work has devised and implemented a computational fluid dynamics solver

with considerable performance gains over the previous CPU implementation. The pressure-

based SIMPLER algorithm was used for solution of the incompressible Navier-Stokes equations

on a staggered, structured cartesian grid. The resulting discretized equation systems were

solved through a block-iterative method resulting in a large number of tridiagonal systems,

subsequently solved by a parallel vector method tailored to the unique architecture of the

GPU.
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APPENDIX

Test system

All performance comparisons were performed on the following system:

• CPU: Intel Core2 Quad Processor Q6600 (8M Cache, 2.40 GHz, 1066 MHz FSB)

• GPU: BFG NVIDIA GeForce GTX 260 OC MAXCORE 55 (896MB RAM, 216 stream

processor cores, 590MHz core clock, 1296MHz shader clock)

• Memory: 4GB DDR2

• Operating system: Ubuntu 9.10 x64, Linux kernel 2.6.31-16

• CUDA compiler: NVCC release 3.0, V0.2.1221

• C++ compiler: GNU g++ V4.3

• Fortran compiler: Intel Fortran 64 Compiler Professional V11.0.083
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